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In recent years, the cation-π interaction has come to be
appreciated as an important noncovalent binding force.1 Studies
in the gas phase,2 in aqueous media using synthetic receptors,3

and in a biological context with a number of protein systems1,4,5

have established the broad scope and significance of this
interaction. A complete, quantitative description of the cat-
ion-π interaction would involve a number of intermolecular
forces, such as charge-quadrupole, charge-dipole, charge-
induced dipole, charge transfer, dispersion forces, and, in some
cases, a hydrophobic component. However, we have argued1,3a,4

that, to first order, the major aspect of the cation-π interaction
is electrostatic in nature, involving the interaction of the cation
with the large, permanent quadrupole moment of the aromatic.6

In the present work we describe an evaluation of the extent to
which the electrostatic model can rationalizeVariationsin cation
binding abilities among various aromatic systems. We find that,
indeed, the electrostatic model provides a quantitative under-
standing of the trend seen across a series of prototypical aromatic
systems.
We have performed a series ofab initio computational studies

on the binding of the sodium cation (Na+) to the π face of
structures1-11 (Chart 1). We consider such complexes to
provide a good model for the quantitative trends expected in
the cation-π interaction. For example, we have previously
shown3b that using NH4+ in place of Na+ does not alter any
trends in such data, and so these simpler model calculations
are relevant to real experimental systems. Binding energies were
evaluated at the 6-31G**//6-31G** level,7 using the Gaussian
928 package. This level of theory is quite adequate for such a
study.9 To estimate the electrostatic contribution to binding,
we replaced the Na+ of the optimized complex with a dummy
probe atom and evaluated the electrostatic potential (EPopt) at
that point. We also performed the same calculation using the
geometry of the uncomplexed aromatic molecule and evaluating

the potential 2.47 Å10 above the center of the ring (EPunopt).
The latter approach interrogates the aromatic absent any
distortions due to the Na+, as is perhaps appropriate for an
electrostatic model. Either approach leads to the same conclu-
sions, and we will emphasize the EPopt data here.
Consider first the binding energies (BE) of the prototype

monosubstituted aromatics1-5 (Table 1). Superficially, the
trend makes sensesaniline (4) is better than benzene at binding
Na+, while fluorobenzene (2) is worse. However, phenol (3),
which is generally considered to be an “electron-rich”π system,
is no better than benzene at binding Na+. Also, one might have
expected the fullπ acceptor5 to be much more deactivated
than2, but this is not the case.
While the trend for1-5 does not fit any kind of resonance-

based arguments, it is in rough agreement with a Hammett
analysis based on the substituent constantsσm or σm+.11 This
means that inductive effects are much more relevant than
resonance effects in the binding of the sodium cation. A more
satisfying rationalization of the binding data was obtained by
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simple inspection of the electrostatic potential maps1,3b for 1-5.
As such, we quantitatively evaluated the electrostatic potential
at the sodium position as a measure of the electrostatic
contribution to the binding energy (Table 1). A plot of EP vs
BE for these simple systems (1-5) was quite provocative. The
slope was roughly 1 and the intercept largesca. 12 kcal/mol.
That is, a structure with no electrostatic component was
predicted to have a BE of 12 kcal/mol. For this reason, we
evaluated 1,3,5-trifluorobenzene (10), a structure well-known
to have a quadrupole moment very near zero.6b As shown in
Table 1, the BE of10 was roughly as expected, and the EP
was close to zero.
The full results for structures1-11are given in Table 1 and

Figure 1. Consideration of just the raw data of Table 1 would
suggest that the electrostatic component of the cation-π
interaction is highly variable: in the range of 40-60% in most
systems, but near zero in some. However, Figure 1 provides a
deeper insight. Plotting EPopt vs BE gives a slope of 1 and an
intercept near 12 kcal/mol.12 This means that across the series
1-11, essentially 100% of theVariation in binding energy is
reflected in the electrostatic term. All other factors (induced
dipole interaction, charge transfer, etc.) are absorbed into a
constantterm, worth ca. 12 kcal/mol in these structures.
It is surprising how well such a simple model treats such

a considerable variation in BE. Of course, there are sub-
tle deviations from the scheme. For example, naphthalene
lies clearly above the correlation line. The major factors other
than the electrostatic termsmainly the polarizability-related
termssshould be larger for a molecule with a larger surface
area, and so more significant for naphthalene. Still, this
variation must be fairly small.
The current results are consistent with other analyses of the

cation-π interaction. In particular, Kollmann suggested that

electrostatic terms account for ca. 60% of total BE for ethylene‚-
Li+,13 similar to our finding for benzene. A number of recent
studies2f,g,i have described various schemes for partitioning the
binding energy in complexes between aromatic molecules and
ammonium cations.14 We believe that the simple, direct
evaluation of electrostatic energy employed here has advantages
over component analyses of the full wave function, which are
always subject to complex interpretation. It is clear that in most
aromatic systems, electrostatic interactions between an ion and
the quadrupole moment of an aromatic make major contributions
to the cation-π interaction. Perhaps more importantly for
designing or evaluating new systems, trends across a series of
related structures can be completely rationalized by considering
only electrostatic terms.
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(14) (a) Note that in studies of C6H6-NMe4+ interactions,2g,hpolarization
of the NMe4+ group will also contribute to the binding, increasing the
apparent importance of polarizability in the binding. Here, we have evaluated
only the role of the aromatic in cation-π interactions by choosing a
nonpolarizable cation.

Table 1. Calculateda Binding Energiesb (BE) and Electrostatic
Contributionsb (EPopt and EPunopt) to the Binding Energies for
Complexes of Compounds1-11 with Na+

complex BE EPoptc EPunoptd

1‚Na+ -27.1 -15.6 -15.0
2‚Na+ -22.0 -10.5 -9.8
3‚Na+ -26.9 -15.8 -13.9
4‚Na+ -31.8 -20.7 -19.3
5‚Na+ -24.4 -12.1 -11.0
6‚Na+ -20.0e -8.9 -8.4
7‚Na+ -21.5 -9.8 -9.3
8‚Na+ -15.7 -3.7 -3.3
9‚Na+ -16.8 -5.2 -4.6
10‚Na+ -12.4 -1.2 0.3
11‚Na+ -28.7 -14.9 -14.2

a 6-31G**//6-31G**. b In kcal/mol. c Electrostatic potential is cal-
culated using the optimized geometry of the complexes.d Electrostatic
potential is calculated using the optimized geometry of the uncomplexed
aromatic molecules and setting the sodium cation at the distance of
2.47 Å from the center of the ring.eNot a true minimum at this level
of theory. See ref 7.

Figure 1. Correlation between binding energy and electrostatic
potential for molecules1-11 in their complexes with sodium cation.
For this plot, the correlation coefficient is 0.991.
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